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Three-Dimensional Treatment of Convective 
Flow in the Earth's Mantle 

John R. Baumgardner ~ 

A three-dimensional finite-element method is used to investigate thermal con- 
vection in the earth's mantle. The equations of motion are solved implicitly by 
means of a fast multigrid technique. The computational mesh for the spherical 
problem is derived from the regular icosahedron. The calculations described use 
a mesh with 43,554 nodes and 81,920 elements and were run on a Cray X. The 
earth's mantly is modeled as a thick spherical shell with isothermal, free-slip 
boundaries. The infinite Prandtl number problem is formulated in terms of 
pressure, density, absolute temperature, and velocity and assumes an isotropic 
Newtonian rheology. Solutions are obtained for Rayleigh numbers up to 
approximately 106 for a variety of modes of heating. Cases initialized with a 
temperature distribution with warmer temperatures beneath spreading ridges 
and cooler temperatures beneath present subduction zones yield whole-mantle 
convection solutions with surface velocities that correlate well with currently 
observed plate velocities. 

KEY WORDS:  Mantle convection; multigrid; finite element; three dimen- 
sional; icosahedral mesh. 

1. INTRODUCTION 

Although sea floor spreading and continental drift have been widely accep- 
ted for almost two decades, the processes responsible for the observed pat- 
tern of plate motion still are not well understood. The present consensus is 
that the movements of the tectonic plates are the surface expression of a 
global pattern of solid state thermal convection in the earth's silicate 
mantle-- the region that occupies the outer 45 % of the earth's radius and 
some 83 % of this volume. 

1Theoretical Division, Group T-3, University of California, Los Alamos National 
Laboratory, Los Alamos, New Mexico 87545. 
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Estimates for the mantle's viscosity and temperature structure together 
with experimental data on the thermal properties of silicate minerals yield 
Rayleigh numbers in excess of 10 4 times that required for the onset of 
convection. ~ Therefore, the mantle is almost certainly convecting in a 
vigorous fashion. 

Much effort has been devoted to obtaining more accurate estimates 
with better spatial resolution of the mantle's physical properties. In general 
such estimates must be inferred from seismic, gravity, heat flow, and 
topographic measurements made at or near the earth's surface. Recently 
seismic techniques have provided the ability to reconstruct the mantle's 
three-dimensional density structure, although the resolution is still severely 
limited.(2,~) 

A highly desirable component in this task of relating the plate motions 
to the dynamic processes in the mantle is the ability to simulate 
numerically the convective flow field. (4'5) Because the problem is nonlinear 
and, in general also time dependent, even an incompressible and constant 
material property treatment in three dimensions has been considered 
beyond the reach of present computers/6) This paper summarizes an 
approach that allows such three-dimensional time-dependent calculations 
and presents results for Rayleigh numbers up to 1000 times the value at 
which convection begins. 

2. M A T H E M A T I C A L  F O R M U L A T I O N  

The mantle convection problem is formulated in terms of conservation 
equations of linear momentum, mass, and energy inside a spherical shell 
with appropriate boundary conditions. Rotational effects are neglected 
since the Coriolis force is extremely small compared with the viscous forces 
and since the centrifugal force causes the ratio of major radius to minor 
radius of the earth to depart from unity by only one part in three hundred. 
The inertial forces similarly are quite small relative to the viscous forces, 
and they also are omitted from the equations of motion. A linear and 
isotropic constitutive law is assumed so that the mantle is treated as an 
infinite Prandtl number Newtonian fluid. 

Under these assumptions, the following equations describe the local 
behavior: 

0 =  -Vp +pg  +V-  ~ (1) 

Op = -V-  (pu) (2) 
at 

0T [~ : Vu + V- (kVT) + H]  
- - =  - v .  ( T u ) -  (~, - l )  7 V -  ,, -~ (3)  
•t pc~ 
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where 

= #[Vu + (Vu) r -  2I(V. u)/33 (4) 

and 

p = p(p ,  T) (5) 

Here p denotes pressure, p density, g gravitational acceleration, ~ deviatoric 
stress, u fluid velocity, T absolute temperature, 7 the Griineisen ratio, k 
thermal conductivity, H volumetric radiogenic heat production, cv specific 
heat at constant volume, and p dynamic viscosity. Equation (1) describes 
the balance among pressure gradient, buoyancy, and viscous forces. 
Equation (2) expresses the conservation of mass. Equation (3) describes 
the conservation of energy in terms of the absolute temperature. Equation 
(4) is the constitutive law, and (5) represents the equation of state as a 
suitable function of density and temperature. This compressible for- 
mulation that uses the primitive variables, p, p, T, and u is notably more 
general than the incompressible Boussinesq formulation commonly 
employed for such problems. 

From seismic observations, the earth's outer core is known to be in 
the liquid state. Free-slip, isothermal boundary conditions are therefore 
appropriate for the inner boundary. Similar boundary conditions are also 
reasonable for the outer surface. For simplicity, the boundaries are also 
assumed undeformable. 

A common measure of the vigor of the convection is the Rayleigh 
number R. For a plane layer of thickness d heated from below, the 
Rayleigh number is defined as 

c~gp 2A Td 3 
R = (6) 

#k 

where e is the volume coefficient of thermal expansion, A T is the tem- 
perature difference across the layer, and the other quantities are as defined 
above. When the layer is heated entirely from within, A T  is replaced by 
Hd2/k. These definitions for Rayleigh number will be applied to the 
spherical shell, where d represents the shell thickness. The Rayleigh number 
at which the layer becomes unstable to the onset of convection is known as 
the critical Rayleigh number. For a spherical shell with a ratio of inner to 
outer radius corresponding to that of the earth's mantle, the critical 
Rayleigh number is about 1000 when the heating is entirely from the inner 
boundary and about 1800 when the heating is entirely from sources interior 
to the shell. (5) 
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3. C O M P U T A T I O N A L  STRATEGY 

An efficient method for numerical solution of the system of equations 
in the previous section will now be described. (7) Briefly, it is a Eulerian 
finite-element formulation that utilizes a fast multigrid elliptic solver for the 
equations of motion. A nested set of almost uniform discretizations of the 
sphere, constructed from the regular isosahedron (Fig. 1), provides the 
basis for the multigrid procedure. (8) The successively finer meshes shown in 
Fig. 1 are obtained by construction of great circle arcs between side mid- 
points of the spherical triangles. The refinement process can be repeated to 
yield almost uniform triangulations of the sphere of any desired resolution. 

The three-dimensional mesh is realized (Fig. 2) by replicating the 
spherical mesh at various radial positions to yield elements having the form 
of triangular prisms with spherical ends. Spherical barycentric coordinates 
are defined on each of the spherical triangles. The finite-element basis 
functions are Cartesian products of piecewise linear functions (the spherical 
barycentric coordinates) in the tangential direction and piecewise linear 
functions in the radial direction. 

The calculations described in the next section use, as the finest mesh, 
one with 16 subdivisions of the original icosahedral sides (Fig. le) and 16 
layers of elements in the radial direction. Such a mesh has 43,554 nodes 
and 81,920 elements. The velocity field is discretized in terms of the 
piecewise linear basis functions identified with the nodes, while the density, 
temperature, and pressure fields are discretized using piecewise constant 
functions defined on the elements. Hence, there are 130,662 degrees of 
freedom associated with the velocity field and 81,920 degrees of freedom in 
the scalar density and temperature fields. 

Because the basis functions are factorable into tangential and radial 
parts, the finite-element operators may be generated and stored inexpen- 
sively in factored form and assembled only as they are applied. The sym- 
metries of the icosahedron are exploited to reduce further the costs of 
generation, storage, and assembly. Combining pairs of the original 20 
icosahedral triangles to form ten diamonds on the sphere leads to a data 
structure composed of ten logical cubes. Such a structure is well suited to 
vector processing and multitasking. On a vector machine such as a Cray, 
this implementation yields a speed corresponding to one addition or mul- 
tiplication, on the average, for every two computer-clock cycles for the 
code as a whole. 

The key to the overall efficiency of the numerical approach is the mul- 
tigrid solution of the equations of motion. The multigrid method requires 
only order n machine operations to solve an elliptic system of n equations. 
It is therefore competitive with spectral methods that utilize the FFT 
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(a) 

I 

Fig. 1. (a) Mesh produced by projection of the regular icosahedron onto the sphere. (b)-(f) 
Successive mesh refinements obtained by connecting midpoints of triangle sides with great cir- 
cle arcs. 
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Fig. 2. Portion of three-dimensional finite element mesh. Elements have three planar faces 
and two faces that are spherical triangles. 

algorithm and can be applied where harmonic representations are 
inappropriate. As implemented for the presented application, the iterative 
multigrid algorithm first projects the residual field from the finest grid into 
all the coarser grids. Then beginning with the coarsest grid, it uses a local 
approximate inverse at each grid level to improve the correction field as 
this correction field is interpolated back to the finest grid. The local 
approximate inverse operators are constrained to have the same graph, 
that is, to involve the same nodes in the mesh, as the forward finite-element 
operators. A least-squares procedure is used to generate the inverse 
operators from the forward operators. The multigrid algorithm yields a 
reduction in the norm of the residual of a factor, typically, of three to ten 
per iteration. The cost per iteration is equal approximately to four 
applications of the forward operator. 

A conservative cell-wall advection technique is used to treat the 
V-(pu), V. (Tu), and V ' u  terms in Eqs. (2) and (3). Heat conduction is 
handled in a simple finite-difference fashion. 
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The strategy for solving the system (1)-(5) is first to compute the 
pressure field from the density and temperature fields via the equation of 
state, to solve (1) implicitly for the velocity field using the multigrid solver, 
to compute from (2) and (3) the rates of change of the density and tem- 
perature fields using this velocity field, and to take a time step and update 
the density and temperature fields. Actually, a second-order time 
integration scheme is used that requires two such solution passes per time 
step. For optimum performance, the time step is dynamically adjusted so as 
to require but one iteration of the multigrid algorithm to maintain a 
prespecified level of accuracy in the solution of the equations of motion. 

For the case of constant viscosity and almost incompressible flow, the 
divergence of the stress in Eq. (1) reduces to the viscosity times the 
Laplacian operator applied to the velocity field. For this simplified treat- 
ment, the cost per time step for the mesh with 81,920 elements is 
approximately 2.0 CPU seconds on the Cray X. For high Rayleigh number 
problems where fine resolution is needed near the shell boundaries, 
typically 2000 time steps are required per convective overturn. Thus the 
cost for such calculations on the current generation of machines is still far 
from modest. 

4. R E S U L T S  

This section describes calculations from a Fortran-coded version of the 
numerical method just reviewed. In addition to the assumptions mentioned 
in Section 2, the calculations further assume constant material properties 
throughout the shell and almost incompressible flow. Although mantle 
viscosity is strongly temperature and pressure dependent and although 
there are mineral-phase changes through the upper mantle as well as some 
30% compression across the lower mantle, the simplified model provides 
the ability to investigate the fundamental character of the three-dimen- 
sional convection in a spherical shell, whose average properties closely 
match those of the mantle. 

The assumption of almost incompressible flow admits a simple 
equation of state 

p = K[(p  -- Po)/Po + co(T-  To) ] (7) 

where K is the bulk modulus, P0 the reference density, and T o the reference 
temperature. The radius ratio of the spherical shell used to represent the 
mantle is chosen to be ratio of the core-mantle boundary to the earth's 
outer radius, or 0.547. The model therefore assumes a whole-mantle style of 
convective flow. 
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The resolution of the mesh imposes a limit on the Rayleigh number 
because of zoning requirements for the boundary layers. This maximum 
Rayleigh number is of the order of 106, when heating is primarily from 
below. While the Rayleigh number estimated for the mantle is of the order 
of 107 , this resolution nevertheless allows calculations far into the super- 
critical region--some 103 times the critical Rayleigh number compared 
with 10 4 for the earth. 

Under the foregoing constraints, the problem needs be examined in 
terms of only three imputs--the Rayleigh number, the extent of internal 
heating, and the initial conditions. Briefly, the calculations reveal notable 
differences in the character of the convection in cases for which the heating 
is mostly from below compared with cases dominated by internal heating. 
When heating is mostly from below, i.e., from the inner boundary, tem- 
porally stable solutions are obtained up to the highest Rayleigh numbers 
investigated. At the higher Rayleigh numbers, the upwelling flow constricts 
to a small number of narrow plumes. The number of plumes is only weakly 
related to Rayleigh number. By contrast, mostly internal heating yields 
time-dependent solutions when the Rayleigh number exceeds about 
150 times the critical value. In these solutions it is the downwelling flow 
that displays plumelike character. Furthermore, the number of plumes 
increases strongly with Rayleigh number. When heating is mostly from 
below, high spatial frequency components in the initial condition dissipate 
quickly, but the low-frequency components persist for many convective 
overturns. When heating is mostly internal, memory of the initial condition 
is brief, especially at the higher Rayleigh numbers. 

Since the character of the motion observed at the earth's surface 
strongly resembles the low-frequency nature of convection when heating is 
mostly from below, it seems probable that this indeed is the convective 
style that prevails in the mantle. Before considering this issue further, some 
examples.will be presented that illustrate the general trends. 

Figure 3 shows the stable solution obtained for a case heated entirely 
from below at a Rayleigh number of 5 • 105, or approximately 500 times 
critical. This case used a L = 3, M = 3 sectorial harmonic as its initial tem- 
perature distribution. Figure 3 is plotted in Mercator projection so that the 
whole sphere, apart from small regions at the poles, can be displayed in a 
single frame. Color is used to represent the temperature field. Arrows 
denote tangential velocity, triangles radially upward velocity, and squares 
radially downward velocity. The three frames depict different radial 
positions in the spherical shell. 

The solution in Fig. 3 consisting of three zones of upwelling flow 
represents the preferred pattern for spherical shells of radius ratio near 0.55 
when heating is entirely from below for Rayleigh numbers just above 



Fig. 3. Convection solution shown in Mercator projection for spherical shell heated only 
from below with Rayleigh number 5 • 105. Arrows represent tangential velocity in magnitude 
as well as in direction. Triangles denote radially outward velocity and squares radially inward 
velocity. Temperature is depicted by color. (a) Solution near outer boundary with temperature 
range between 320 and 1630 K. (b)Solution at middepth with temperature range between 660 
and 2800 K. (c) Solution near inner boundary with temperature range between 2120 and 
3750 K. Note the localized character of the upwelling flow. Solution is stable with time. 



Fig. 4. (a) Example of random initial temperature distribution. (b), (c) Solution near the 
outer boundary and at middepth, respectively, for a case with purely internal heating and 
Rayleigh number of 5 x 10 6. Temperatures vary with depth approximately as in Fig. 3. Note 
the high spatial frequency character of the pattern. Solution is time dependent with the 
downwelling columns in (c) displaying a slow drift. 



Fig. 5. Convection solution for spherical shell with 50 % internal heating, 50 % heating from 
below, Rayleigh number 5 • 105, and initialized with a random temperature distribution. Pat- 
tern consisting of six upwelling plumes is realized after approximately two convective over- 
turns and changes very little during three additional overturns. Solution at this final time is 
shown (a) near the outer boundary, (b)at middepth, and (c) near the inner boundary. Apart 
from an increased number of upwelling zones, the solution is similar in character to that of 
Fig. 3 in which the heating is entirely from below. 



Fig. 6. Time history for a case identical to that of Fig. 5 except for initial condition. Here the 
initial temperature distribution contains a positive anomaly beneath mid-ocean ridges and a 
negative anomaly beneath subduction zones on the earth. (a)-(d) are snapshots of the 
solution near the outer boundary at 0.1, 1.3, 2.6, and 3.9 convective overturns, respectively. (e) 
and (f) are at middepth and at the inner boundary at the last time of 3.9 overturns. (g) 
through (1) provide a somewhat better visualization of (d). Remarkable correlation exists 
between the surface velocities and plume locations in this solution with the plate velocities and 
sites of mid-ocean volcanic activity observed for the earth. 



Fig. 6 (continued) 



Fig. 6 (continued) 
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critical up to at least 1 0  6 . It is approached in the steady state from almost 
all initial conditions. At Rayleigh numbers on the order of only a few times 
critical, the solution resembles an L = 3, M = 3 sectorial harmonic with a 
small added amount of the L = 2, M = 2 harmonic. The noteworthy aspect 
of this mode of heating is the small number of upwelling zones, a feature 
that persists to the highest Rayleigh numbers studied. 

The middle and bottom frames of Fig. 4 show the solution for a case 
heated entirely from within, with a Rayleigh number of 5 x 106, or about 
2800 times critical. The large number of downwelling plumes are evident. 
The top frame of Fig. 4 is the random initial condition used for this case. 
At this high Rayleigh number, the convection has the character of diffuse 
upwelling flow, with downwelling occurring in tight columns that drift with 
time but which are distributed more or less uniformly over the sphere. A 
notable aspect of this mode of heating is the high spatial frequency charac- 
ter of the convective flow at high Rayleigh number. The high-frequency 
pattern appears quickly regardless of the initial condition. 

In the earth's mantle, there is both internal heating as a consequence 
of radioactive elements in the mantle rock and heat flowing into the mantle 
from the core. The relative contributions from these two sources are not 
well constrained by present observations. Motivation exists, therefore, to 
investigate convective behavior when there is a combination of internal 
heating and heating from below. 

Figure 5 shows the solution obtained for a case random initial con- 
ditions, a Rayleigh number of 5 x 105, and 50 % internal heating. There are 
five upwelling plumes with the suggestion of a sixth. The downgoing flow 
consists mostly of pieces of the cold outer boundary layer that descend in 
sheetlike fashion and maintain sheetlike character most of the way to the 
inner boundary. This shapshot was after approximately five convective 
overturns, and the solution appears to be stable in time. 

Several observations can be distilled from calculations with a mixture 
of internal heating and heating from below. When the proportion of inter- 
nal heating is less than 75 %, the convective style has the essential charac- 
ter of heating purely from below with upwelling at cell centers. Almost 
steady flow is realized. At Rayleigh numbers (based on the heating-from- 
below formula) above 100 times critical, the flow is characterized by a 
small number of upwelling plumes. The number of plumes seems to be only 
weakly influenced by the amount of internal heating and to increase slowly 
with increasing Rayleigh number. Six plumes seem to be preferred for 
R---10 6, and 50% internal heating. 

The spatial frequencies and the character of the downwelling flow in 
Fig. 5 display similarities with observable tectonic features of the earth. The 
outer stiff portion of the earth known as the lithosphere, typically 50 to 
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100 km in thickness, is broken into seven major plates. The plates are mov- 
ing apart at mid-ocean ridges and are being subducted into the mantle at 
ocean trenches. To explore the possibility of a correlation between the dis- 
tribution of the ridges and trenches and a global pattern of convective flow 
in the mantle, cases were run with initial conditions that incorporate the 
current ridge/trench pattern. Specifically, the initial temperature dis- 
tribution contained a positive perturbation beneath present ridges and a 
negative perturbation beneath subduction zones. 

Figure 6a shows the solution near the beginning of a calculation using 
this special initial condition, a Rayleigh number of 5 x t05, and 50 % inter- 
nal heating. Except for the initial condition, this case is identical with that 
of Fig. 5. Figures 6b and 6c are snapshots of the solution near the outer 
boundary at approximately 1.3 and 2.6 convective overturns, respectively. 
Figures 6d-1 represent a snapshot of the solution after approximately 3.9 
convective overturns. 

Among the noteworthy features of this solution is that the sheetlike 
pattern of upwelling associated with the initial temperature distribution 
quickly constricts into seven well-defined plumes which then persist for 
several convective overturns. The locations of these plumes correlate sur- 
prisingly well with volcanic activity in Iceland, the Horn of Africa, the 
Kerguelen Islands, and Hawaii. The surface velocities likewise agree well in 
direction and relative magnitude with observed plate velocities. Absolute 
velocities are low by approximately a factor of 10. This reflects the fact that 
the Rayleigh number for this case is a factor of 20 to 40 below that of the 
mantle. Since convective velocity scales approximately as the two-thirds 
power of the Rayleigh number, the absolute velocities are in reasonable 
agreement with observed values. 

5. C O N C L U S I O N S  

The sharp contrast in the character of the convective flow at high 
Rayleigh number between mostly internal heating and moderate heating 
from below provides a good basis for concluding that a substantial portion 
of the heating of the earth's mantle is from the core. This conclusion seems 
justified by the fact that dynamo action in the core to maintain the 
geomagnetic field against ohmic dissipation also appears to require a 
significant core heat flux. If this indeed is true, then these calculations 
indicate that the flow pattern in the mantle is dominated by a relatively 
small number of upwelling plumes. The pattern and spatial frequency 
character of the mid-ocean ridges would therefore be related to this system 
of localized upwelling flow. 
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These calculations imply that the computational tools are now 
available to perform relatively well-resolved three-dimensional simulations 
of the earth's interior. This capability, coupled with the recent advances in 
seismic techniques that provide three-dimensional observational data, 
suggests that significant new insights into the processes responsible for the 
earth's tectonic history may be imminent. 
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